Are Ceramics Corrosion Resistant?

Ceramics are the preferred materials for use in harsh environments because they are highly resistant to corrosion and wear. Aside from being corrosion and wear-resistant, advanced ceramics can also withstand high temperatures, pressures and other extreme conditions. Throughout this blog post, we will look at how corrosion-resistant ceramics are used in the oil and gas industries and what benefits this provides.Continue reading

9 Different Types of Corrosion Affecting Materials

Corrosion is the process by which a material deteriorates due to chemical interactions. All materials are subject to corrosive phenomena, but metals are especially prone to corrosion as surface atoms readily oxidise in specific conditions. There are steels designed to utilise oxidation for corrosion resistance (i.e. weathering steel) and other grades with regenerative patinas engineered to reduce surface corrosion (i.e. stainless steel). But few engineering-grade steels can match advanced, corrosion-resistant ceramics in terms of chemical stability. Continue reading

Wear in Industry: Advanced Ceramic Case Studies

In many industries that involve heavy machinery and extremely high temperatures, careful material selection is common. Advanced ceramics play a vital role in preventing or reducing industrial wear. In this blog post, we will review industrial wear applications and take a look at two advanced ceramic case studies.Continue reading

Sand Blasting

Advanced Ceramics and Wear Prevention

Industrial processes are dictated by different, often conflicting, needs. Maximising throughput demands minimal downtime. But eliminating downtime is impossible when tools require maintenance to function at optimal levels. However, optimal functionality underlies desired yields and, of course, throughput. There is a cyclical nature to the demands of high-performance industrial components, but there is also a very clear throughline: maximising durability is critical to true quality assurance and profitability. Hence wear prevention is a critical factor impacting a wide range of end-to-end performance parameters.

Continue reading

Understanding Wear and Recognising Different Wear Modes

Most of us are familiar with the concepts of wear and tear, but the mechanisms of action underlying these phenomena can be surprisingly complex. Wear is defined as the loss of material from a solid’s surface due to mechanical action exerted by some other solid. It is such a universal process that only organic materials are immune since they can self-replicate and essentially restore surface fatigue. Therefore, every branch of materials science must contend with one or more different wear mechanisms.Continue reading

Materials Used in Advanced Ceramics Applications

Advanced ceramic applications are far-reaching, constantly evolving, and continue to drive innovation in engineering and technology. Different types of advanced ceramics each have specific characteristics, offering a high-performance, economical alternative to traditional materials such as metals, glass, and plastics.

Continue reading
Aluminium casting

Transferring Molten Aluminium Safely with Crucibles & Ladles

Effective manufacturing of finished aluminium products or aluminium castings relies on efficient transferring of large amounts of liquid and solid metal. However, within even the biggest foundries and cast houses there are often instances where operators need to focus on smaller quantities of molten metal and the means of transferring it efficiently and safely.

Continue reading