Zircalon 30 Weld Location Pins

Comparing the Fracture Toughness of Zirconia Ceramics

Zirconia ceramics represent the primary application for the compound zirconium dioxide (ZrO2), accounting for over half of the world’s zirconium demand. Recent reports suggest that the global zirconia market will top 1.5 million tonnes by 2022; meaning global demand of the raw mineral purely for zirconia ceramics manufacturing could top 750,000 tonnes in a few short years. Estimates suggest that this is less than 1% of the world’s total zirconium reserves.Continue reading

Weld Pins

Insight into the Hardness of Zirconia Ceramics

Zirconium dioxide (ZrO2) is one of the most well-characterised ceramic materials on earth. It occurs naturally in the mineral baddeleyite, which primarily adopts a monoclinic crystalline structure: one of the three primary forms of the material. The most widely-known form of zirconia is the cubic crystal phase which often serves as a cost-effective diamond substitute. However, estimates suggest that demand for zirconia ceramics accounts for as much as 54% of the worldwide zirconium market[1].

Continue reading

Ceramics Engineering: Pressure Vs. Pressureless Sintering

Sintering is arguably the most important step in the ceramics manufacturing process. It is the phase when the green-body is fired at temperatures approaching the ceramic powder’s melting point, causing the consolidated raw material to undergo numerous chemical and physical changes. Several distinct sintering methods exist, but each one essentially exploits the same properties of ceramics to form a densified workpiece with desired properties and material characteristics.Continue reading

3 Key Benefits of Printed Ceramic Materials

Additive manufacturing, or 3D printing, has been on the rise since the early 1980s yet it is still considered an immature technology. The first iterations used photo-hardening of thermoset polymers to generate three-dimensional models via masking or fiber scanning. There are now a myriad of techniques available to generate components via deposition as opposed to conventional machining, yet 3D printing is still generally used for prototyping and hobbyist applications. Significant investment has been made in industrial spaces to help realize the commerciality of additive manufacturing at appropriate scales, particularly for technical ceramic materials.Continue reading

AM Silicon Nitride Ceramics

Ceramic Solutions: Additive Manufacturing High-Quality Silicon Nitride Components

Technical ceramics possess numerous properties that make them attractive engineering solutions for challenging applications. They largely outperform industrial-grade polymers and metals for high-temperature operation, with comprehensively superior mechanical properties and thermodynamic stability. Ceramic solutions are currently utilised in industries as varied as aerospace and defence, automotive engineering, chemicals and petrochemicals manufacturing, energy generation, and molten metal handling.Continue reading

Outlining Diamond Grinding of Ceramics

Advanced ceramics manufacturing comprises three essential stages: raw powder processing; forming; and sintering. This generally describes the process of consolidating a powder-based feedstock and firing the green body to achieve a fully-densified technical ceramic. Net shapes with comparatively loose dimensional tolerances (~1-3%) can typically be produced ‘as-sintered’; requiring no machining or finishing prior to quality assurance inspections. Components with tight tolerances cannot be produced ‘as-sintered’ and may require diamond grinding to ensure that the net shape is usable according to the design intent.Continue reading