A ceramic heater tube can be used in environments that require corrosion or abrasion resistant materials or need high temperature resistance. This makes them perfect for equipment used in temperature-specific industrial processes.
Continue readingHow Ceramic Welding Rollers Can Shorten Lead Times
Innovation is often the answer to process inefficiency. Manufacturers routinely look to develop new systems that address specific pain points in industrial manufacturing. Welding rollers, for example, unlocked greater levels of throughput and product quality in longitudinal seam welding and high-frequency electric resistance welding (HF-ERW). These relatively simple components allowed for accurate positioning and conveying of cylindrical workpieces throughout key processes. This enabled manufacturers to break new ground in operational efficiency. But conventional pipe rollers are not without issue.Continue reading
Festive Holidays Notice
International Syalons (Newcastle) Ltd. offices will be closed from Friday 22nd December 2023 until Tuesday 2nd January 2024.
How Technical Ceramics Can Help Avoid Automated Assembly Downtime
Downtime in automated systems represents an immense challenge in today’s manufacturing world. In an era where efficiency and timely delivery are paramount, even slight halts in the production process can incur significant costs and delays. But what if there were advanced materials, specifically technical ceramics, poised to make a difference? As we venture deeper into the realms of advanced manufacturing processes, we’ll uncover how these ceramic materials can mitigate the daunting costs associated with downtime.Continue reading
International Syalons – Calsitherm Group: 5 Year Anniversary
International Syalons are proud to celebrate 5 years as part of the Calsitherm Group.
How Does Microstructure Affect Ceramic Properties?
Understanding the relationship between microstructure and ceramic properties is essential for the development of high-performance, advanced ceramic materials. Ceramic materials, particularly silicon nitride ceramics, exhibit a variety of unique properties, such as high strength, thermal shock resistance, and oxidation resistance, making them ideal for demanding applications. However, these properties are highly dependent on the material’s microstructure, which is governed by parameters such as grain size, shape, and distribution.Continue reading
What is Alpha-Sialon?
There are a plethora of applications worldwide that benefit from using technical ceramics because of their high strength, thermal stability, and other unique advanced properties, and industrial processing is no exception. Ceramics play an important role in cutting tools, high-temperature furnace components, and high-wear applications, as they can withstand harsh environments. One ceramic material with very interesting properties is alpha-sialon. Sialons were developed as a cost-effective alternative to silicon nitride and are more often found in three useable phases, one of them being alpha-sialon. This post will provide an overview of alpha-sialon’s structure, primary applications, and benefits.Continue reading
What is Beta-Sialon?
Sialons are at the forefront of technical ceramic capabilities and applications, partly due to their relative novelty. First formed in the 1980s, sialon ceramics are now a well-established innovation. Intensive research and development into formulation optimisation, better forming methods, and higher-performance applications has fostered an in-depth understanding of this complex family of materials. However, the excitement surrounding sialon materials is largely due to their versatility; there are three usable phases of sialon ceramics, each exhibiting advantageous properties.Continue reading
Exploring the Atomic Structure of Silicon Nitride
Silicon nitride is a ceramic chemical compound comprised of silicon and nitrogen and is widely used across many industries. Silicon nitride offers interesting mechanical and thermal properties, which can be tailored for use in many specific high-temperature and wear-resistant applications, as well as its use as an insulating and chemical barrier in integrated circuits.1 However, to gain a comprehensive understanding of the behavior and properties of silicon nitride, it is necessary to understand its atomic structure. In this blog post, we will explore the atomic structure of silicon nitride and how this influences its properties.Continue reading
Why Choose Silicon Nitride for Ladles?
Chemical and process industries (CPI) require the routine handling of extremely harsh chemicals, usually in bulk and often in a continuous flow. Non-ferrous foundry applications have similar demands, with aggressive melt chemistries and extreme temperatures being a continuous demand for critical components. Both applications use ceramic ladles and crucibles to correctly handle volatile materials during critical processes. These ladles are containers used to handle and transport non-ferrous metals, such as aluminium and its alloys, and can be hand ladles or ladles designed for robotic arms.Continue reading